81 research outputs found

    Children engaging with drama: an evaluation of the national theatre's drama work in Primary schools 2002-2004

    Get PDF

    Jumping without Using Legs: The Jump of the Click-Beetles (Elateridae) Is Morphologically Constrained

    Get PDF
    To return to their feet, inverted click-beetles (Elateridae) jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant “takeoff” angle (79.9°±1.56°, n = 9 beetles) that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing

    International approaches to protecting and retaining trees on private urban land

    Get PDF
    Most studies of urban forest management look at vegetation on public land. Yet, to meet ambitious urban forest targets, cities must attempt to maintain or increase trees and canopy cover on private urban land too. In this study, we review and evaluate international approaches to protecting and retaining trees on private urban land. Our study combines a systematic academic literature review, two empirical social science studies on the views of urban forest professionals, and a global case study review of innovative regulations and incentives aimed at protecting and retaining trees on private urban land. Case studies were evaluated for the extent they exceeded minimum standards or went beyond ?business-as-usual?. We found that the most innovative mechanisms combine many regulations, instead of relying on a single regulation, and use financial incentives to retain or plant trees in newly developed or re-developed sites, as well as private residences. We did not find any cases where appropriate monitoring was in place to determine the efficacy and efficiency of these mechanisms. We also found no single simple solution that could effectively and efficiently protect and retain trees on private land. Only by combining policies, planning schemes, local laws, and financial incentives with community engagement and stewardship will cities protect and retain trees on private land. Useful and innovative ways to protecting and retaining trees on private land involves providing solutions at multiple governments levels, embedding trees in existing strategic policy and management solutions, incentivising positive behavior, creating regulations that require payment up front, and engaging the broader community in private tree stewardship.Peer reviewe

    The Grizzly, November 2, 1984

    Get PDF
    Limerick, Part 3, the Controversy: No Simple Solution in Sight • Students Harassed in Two Incidents • Majority of Students Choose Reagan • Editorial: Some Illuminating Self-abuse en Route to an Endorsement • Letter to the Editor • Election \u2784 • 3000 Alumni Return for Homecoming • News of Yesteryear: Coeds to Hold Dormitory Dawn Patrols • UC Student Attends London\u27s Richmond College • Faculty Symposium Here Tomorrow • proTheatre Presents A Thurber Carnival • Shorts: E.T. Forum; PMA Offers Free Admission; H & PE Offers New Course • Career Planning and Placement Offers Services • Debaters Shine • Bears Upset National Power • Soccer Team to Visit China • Diaphragms Stop Delta Pi in Football • Soccer Wins Two, Record at 14-3 • Swimmers Look Strong • Magic Show Tonight • O\u27Chi\u27s Fiftiethhttps://digitalcommons.ursinus.edu/grizzlynews/1126/thumbnail.jp

    Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping

    Roswell, GA

    Get PDF
    Prepared by the Spring 2010 Preservation planning class. The Roswell Historic District Design Guidelines give an overview of the historic boundaries and their modern expansion. The guidelines illustrate appropriate structure styles for the district, both residential and commercial. Districts outlined in this design guidelines are the Mill Village and Town Square, Mimosa Boulevard Neighborhood, Uptown- Alpharetta Street Neighborhood, Uptown- Canton Street Neighborhood, and South Atlanta Street Neighborhood.https://scholarworks.gsu.edu/history_heritagepreservation/1037/thumbnail.jp

    Antibody Labelling of Resilin in Energy Stores for Jumping in Plant Sucking Insects

    Get PDF
    The rubbery protein resilin appears to form an integral part of the energy storage structures that enable many insects to jump by using a catapult mechanism. In plant sucking bugs that jump (Hemiptera, Auchenorrhyncha), the energy generated by the slow contractions of huge thoracic jumping muscles is stored by bending composite bow-shaped parts of the internal thoracic skeleton. Sudden recoil of these bows powers the rapid and simultaneous movements of both hind legs that in turn propel a jump. Until now, identification of resilin at these storage sites has depended exclusively upon characteristics that may not be specific: its fluorescence when illuminated with specific wavelengths of ultraviolet (UV) light and extinction of that fluorescence at low pH. To consolidate identification we have labelled the cuticular structures involved with an antibody raised against a product of the Drosophila CG15920 gene. This encodes pro-resilin, the first exon of which was expressed in E. coli and used to raise the antibody. We show that in frozen sections from two species, the antibody labels precisely those parts of the metathoracic energy stores that fluoresce under UV illumination. The presence of resilin in these insects is thus now further supported by a molecular criterion that is immunohistochemically specific

    Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures

    Get PDF
    Defects in endolysosomal and autophagic functions are increasingly viewed as key pathological features of neurodegenerative disorders. A master regulator of these functions is phosphatidylinositol-3-phosphate (PI3P), a phospholipid synthesized primarily by class III PI 3-kinase Vps34. Here we report that disruption of neuronal Vps34 function in vitro and in vivo impairs autophagy, lysosomal degradation as well as lipid metabolism, causing endolysosomal membrane damage. PI3P deficiency also promotes secretion of unique exosomes enriched for undigested lysosomal substrates, including amyloid precursor protein C-terminal fragments (APP-CTFs), specific sphingolipids, and the phospholipid bis(monoacylglycero)phosphate (BMP), which normally resides in the internal vesicles of endolysosomes. Secretion of these exosomes requires neutral sphingomyelinase 2 and sphingolipid synthesis. Our results reveal a homeostatic response counteracting lysosomal dysfunction via secretion of atypical exosomes eliminating lysosomal waste and define exosomal APP-CTFs and BMP as candidate biomarkers for endolysosomal dysfunction associated with neurodegenerative disorders.Fan Wang for the kind gift of the Pi3kc3flox/flox mice. We thank Basant Abdulrahman and Hermann Schaetzl for providing the gene-edited Atg5 KO N2a cells. We are also grateful to Zhenyu Yue, Ralph Nixon, and Jean Gruenberg for the kind gift of anti-Atg14L, Cathepsin D, and BMP antibodies, respectively. We thank Thomas Südhof for sharing Cre recombinase lentiviruses. We thank the OCS Microscopy Core of New York University Langone Medical Center for the support of the EM work and Rocio Perez-Gonzalez and Efrat Levy of New York University for their support during optimization of the brain exosome isolation technique. We thank Elizabeta Micevska for the maintenance and genotyping of the animal colony and Bowen Zhou for the preliminary lipidomic analysis of conditional Pi3kc3 cKO mice. We also thank Rebecca Williams and Catherine Marquer for critically reading the manuscript. This work was supported by grants from the Fundação para a Ciência e Tecnologia (PD/BD/105915/2014 to A.M.M.); the National Institute of Health (R01 NS056049 to G.D.P., transferred to Ron Liem, Columbia University; T32-MH015174 to Rene Hen (Z.M.L.)). Z.M.L. and R.B.C. received pilot grants from ADRC grant P50 AG008702 to S.A.S.info:eu-repo/semantics/publishedVersio

    Protocol for a home-based integrated physical therapy program to reduce falls and improve mobility in people with Parkinson’s disease

    Get PDF
    Background The high incidence of falls associated with Parkinson’s disease (PD) increases the risk of injuries and immobility and compromises quality of life. Although falls education and strengthening programs have shown some benefit in healthy older people, the ability of physical therapy interventions in home settings to reduce falls and improve mobility in people with Parkinson’s has not been convincingly demonstrated.Methods/design 180 community living people with PD will be randomly allocated to receive either a home-based integrated rehabilitation program (progressive resistance strength training, movement strategy training and falls education) or a home-based life skills program (control intervention). Both programs comprise one hour of treatment and one hour of structured homework per week over six weeks of home therapy. Blinded assessments occurring before therapy commences, the week after completion of therapy and 12 months following intervention will establish both the immediate and long-term benefits of home-based rehabilitation. The number of falls, number of repeat falls, falls rate and time to first fall will be the primary measures used to quantify outcome. The economic costs associated with injurious falls, and the costs of running the integrated rehabilitation program from a health system perspective will be established. The effects of intervention on motor and global disability and on quality of life will also be examined. Discussion This study will provide new evidence on the outcomes and cost effectiveness of home-based movement rehabilitation programs for people living with PD
    corecore